1. |
|
Aoyama Yumi, Yamazaki Hiromi, Nishimura Koutarou, et al. Selenoprotein-mediated redox regulation shapes the cell fate of HSCs and mature lineages. Blood. 2025; 145 (11): 1149-1163. doi:10.1182/blood.2024025402 |
|
2. |
|
Iwasaki Tomoyuki, Shirota Hidekazu, Sasaki Keiju, et al. Specific cancer types and prognosis in patients with variations in the KEAP1 ‐ NRF2 system: A retrospective cohort study. Cancer Science. 2024; 115 (12): 4034-4044. doi:10.1111/cas.16355 |
|
3. |
|
Takahashi Jun, Suzuki Takafumi, Sato Miu, et al. Differential squamous cell fates elicited by NRF2 gain of function versus KEAP1 loss of function. Cell Reports. 2024; 43 (4): 114104. doi:10.1016/j.celrep.2024.114104 |
|
4. |
|
Ikejiri Kazuaki, Suzuki Takafumi, Muto Satsuki, et al. Effects of NRF2 polymorphisms on safety and efficacy of bardoxolone methyl: subanalysis of TSUBAKI study. Clinical and Experimental Nephrology. 2024; 28 (3): 225-234. doi:10.1007/s10157-023-02427-w |
|
5. |
|
Sato Miu, Yaguchi Nahoko, Iijima Takuya, et al. Sensor systems of KEAP1 uniquely detecting oxidative and electrophilic stresses separately In vivo. Redox Biology. 2024; 77 : 103355. doi:10.1016/j.redox.2024.103355 |
|
6. |
|
Uruno Akira, Kadoguchi-Igarashi Shiori, Saito Ritsumi, et al. The NRF2 inducer CDDO-2P-Im provokes a reduction in amyloid β levels in Alzheimer’s disease model mice. The Journal of Biochemistry. 2024; 176 (5): 405-414. doi:10.1093/jb/mvae060 |
|
7. |
|
Aoki Yu-ichi, Taguchi Keiko, Anzawa Hayato, et al. Whole blood transcriptome analysis for age- and gender-specific gene expression profiling in Japanese individuals. The Journal of Biochemistry. 2024; 175 (6): 611-627. doi:10.1093/jb/mvae008 |
|
8. |
|
Shimizu Ritsuko, Hirano Ikuo, Hasegawa Atsushi, et al. Nrf2 alleviates spaceflight-induced immunosuppression and thrombotic microangiopathy in mice. Communications Biology. 2023; 6 (1): 875. doi:10.1038/s42003-023-05251-w |
|
9. |
|
Zhang Anqi, Suzuki Takafumi, Adachi Saki, et al. Nrf2 activation improves experimental rheumatoid arthritis. Free Radical Biology and Medicine. 2023; 207 : 279-295. doi:10.1016/j.freeradbiomed.2023.07.016 |
|
10. |
|
Suzuki Takafumi, Takahashi Jun, Yamamoto Masayuki. Molecular Basis of the KEAP1-NRF2 Signaling Pathway. Molecules and Cells. 2023; 46 (3): 133-141. doi:10.14348/molcells.2023.0028 |
|
11. |
|
Baird Liam, Taguchi Keiko, Zhang Anqi, et al. A NRF2-induced secretory phenotype activates immune surveillance to remove irreparably damaged cells. Redox Biology. 2023; 66 : 102845. doi:10.1016/j.redox.2023.102845 |
|
12. |
|
Suzuki Norio, Iwamura Yuma, Nakai Taku, et al. Gene expression changes related to bone mineralization, blood pressure and lipid metabolism in mouse kidneys after space travel. Kidney International. 2022; 101 (1): 92-105. doi:10.1016/j.kint.2021.09.031 |
|
13. |
|
Uruno Akira, Saigusa Daisuke, Suzuki Takafumi, et al. Nrf2 plays a critical role in the metabolic response during and after spaceflight. Communications Biology. 2021; 4 (1): 1381. doi:10.1038/s42003-021-02904-6 |
|
14. |
|
Yumoto Akane, Kokubo Toshiaki, Izumi Ryutaro, et al. Novel method for evaluating the health condition of mice in space through a video downlink. Experimental Animals. 2021; 70 (2): 236-244. doi:10.1538/expanim.20-0102 |
|