1. |
|
Shimizu Ritsuko, Hirano Ikuo, Hasegawa Atsushi, et al. Nrf2 alleviates spaceflight-induced immunosuppression and thrombotic microangiopathy in mice. Communications Biology. 2023; 6 (1): 875. doi:10.1038/s42003-023-05251-w |
|
2. |
|
Zhang Anqi, Suzuki Takafumi, Adachi Saki, et al. Nrf2 activation improves experimental rheumatoid arthritis. Free Radical Biology and Medicine. 2023; 207 : 279-295. doi:10.1016/j.freeradbiomed.2023.07.016 |
|
3. |
|
Suzuki Takafumi, Takahashi Jun, Yamamoto Masayuki. Molecular Basis of the KEAP1-NRF2 Signaling Pathway. Molecules and Cells. 2023; 46 (3): 133-141. doi:10.14348/molcells.2023.0028 |
|
4. |
|
Baird Liam, Taguchi Keiko, Zhang Anqi, et al. A NRF2-induced secretory phenotype activates immune surveillance to remove irreparably damaged cells. Redox Biology. 2023; 66 : 102845. doi:10.1016/j.redox.2023.102845 |
|
5. |
|
Suzuki Norio, Iwamura Yuma, Nakai Taku, et al. Gene expression changes related to bone mineralization, blood pressure and lipid metabolism in mouse kidneys after space travel. Kidney International. 2022; 101 (1): 92-105. doi:10.1016/j.kint.2021.09.031 |
|
6. |
|
Uruno Akira, Saigusa Daisuke, Suzuki Takafumi, et al. Nrf2 plays a critical role in the metabolic response during and after spaceflight. Communications Biology. 2021; 4 (1): 1381. doi:10.1038/s42003-021-02904-6 |
|
7. |
|
Yumoto Akane, Kokubo Toshiaki, Izumi Ryutaro, et al. Novel method for evaluating the health condition of mice in space through a video downlink. Experimental Animals. 2021; 70 (2): 236-244. doi:10.1538/expanim.20-0102 |
|