Tohoku University Tohoku Medical Megabank Organization (Ritsuko Shimizu)
2022.08.12

1.   Suzuki Norio, Iwamura Yuma, Nakai Taku, et al. Gene expression changes related to bone mineralization, blood pressure and lipid metabolism in mouse kidneys after space travel. Kidney International. 2022; 101 (1): 92-105. doi:10.1016/j.kint.2021.09.031  
2.   Tourlousse Dieter M., Narita Koji, Miura Takamasa, et al. Characterization and Demonstration of Mock Communities as Control Reagents for Accurate Human Microbiome Community Measurements. Microbiology Spectrum. 2022; 10 (2): . doi:10.1128/spectrum.01915-21  
3.   Fuse Nobuo, Sakurai Miyuki, Motoike Ikuko N., et al. Genome-wide Association Study of Axial Length in Population-based Cohorts in Japan. Ophthalmology Science. 2022; 2 (1): 100113. doi:10.1016/j.xops.2022.100113  
4.   Uruno Akira, Saigusa Daisuke, Suzuki Takafumi, et al. Nrf2 plays a critical role in the metabolic response during and after spaceflight. Communications Biology. 2021; 4 (1): 1381. doi:10.1038/s42003-021-02904-6  
5.   Saito Sakae, Aoki Yuichi, Tamahara Toru, et al. Oral Microbiome Analysis in Prospective Genome Cohort Studies of the Tohoku Medical Megabank Project. Frontiers in Cellular and Infection Microbiology. 2021; 10 : . doi:10.3389/fcimb.2020.604596  
6.   Ogishima Soichi, Nagaie Satoshi, Mizuno Satoshi, et al. dbTMM: an integrated database of large-scale cohort, genome and clinical data for the Tohoku Medical Megabank Project. Human Genome Variation. 2021; 8 (1): 44. doi:10.1038/s41439-021-00175-5  
7.   Hozawa Atsushi, Tanno Kozo, Nakaya Naoki, et al. Study profile of the tohoku medical megabank community-based cohort study. Journal of Epidemiology. 2021; 31 (1): 65-76. doi:10.2188/jea.JE20190271  
8.   Suzuki Takafumi, Uruno Akira, Yumoto Akane, et al. Nrf2 contributes to the weight gain of mice during space travel. Communications Biology. 2020; 3 (1): 496. doi:10.1038/s42003-020-01227-2  
9.   Kuriyama Shinichi, Metoki Hirohito, Kikuya Masahiro, et al. Cohort Profile: Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study (TMM BirThree Cohort Study): rationale, progress and perspective. International Journal of Epidemiology. 2020; 49 (1): 18-19m. doi:10.1093/ije/dyz169  
10.   Shimizu Ritsuko, Yamamoto Masayuki. Quantitative and qualitative impairments in GATA2 and myeloid neoplasms. IUBMB Life. 2020; 72 (1): 142-150. doi:10.1002/iub.2188  
11.   Tsuboi Akito, Matsui Hiroyuki, Shiraishi Naru, et al. Design and Progress of Oral Health Examinations in the Tohoku Medical Megabank Project. The Tohoku Journal of Experimental Medicine. 2020; 251 (2): 97-115. doi:10.1620/tjem.251.97  
12.   Harada Nobuhiko, Hasegawa Atsushi, Hirano Ikuo, et al. GATA 2 hypomorphism induces chronic myelomonocytic leukemia in mice. Cancer Science. 2019; 110 (4): 1183-1193. doi:10.1111/cas.13959  
13.   Fuse Nobuo, Sakurai-Yageta Mika, Katsuoka Fumiki, et al. Establishment of Integrated Biobank for Precision Medicine and Personalized Healthcare: The Tohoku Medical Megabank Project. JMA Journal. 2019; 2 (2): 113-122. doi:10.31662/jmaj.2019-0014  
14.   Yasuda Jun, Kinoshita Kengo, Katsuoka Fumiki, et al. Genome analyses for the Tohoku Medical Megabank Project towards establishment of personalized healthcare. The Journal of Biochemistry. 2019; 165 (2): 139-158. doi:10.1093/jb/mvy096  
15.   Pan Xiaoqing, Nariai Naoki, Fukuhara Noriko, et al. Monitoring of minimal residual disease in early T‐cell precursor acute lymphoblastic leukaemia by next‐generation sequencing. British Journal of Haematology. 2017; 176 (2): 318-321. doi:10.1111/bjh.13948  
16.   Hasegawa Atsushi, Shimizu Ritsuko. GATA1 Activity Governed by Configurations of cis-Acting Elements. Frontiers in Oncology. 2017; 6 : . doi:10.3389/fonc.2016.00269  
17.   Kaneko Hiroshi, Katoh Takehide, Hirano Ikuo, et al. Induction of erythropoietin gene expression in epithelial cells by chemicals identified in GATA inhibitor screenings. Genes to Cells. 2017; 22 (11): 939-952. doi:10.1111/gtc.12537  
18.   Yu Lei, Moriguchi Takashi, Kaneko Hiroshi, et al. Reducing Inflammatory Cytokine Production from Renal Collecting Duct Cells by Inhibiting GATA2 Ameliorates Acute Kidney Injury. Molecular and Cellular Biology. 2017; 37 (22): e00211–17. doi:10.1128/MCB.00211-17  
19.   Hirano Ikuo, Suzuki Norio, Yamazaki Shun, et al. Renal Anemia Model Mouse Established by Transgenic Rescue with an Erythropoietin Gene Lacking Kidney-Specific Regulatory Elements. Molecular and Cellular Biology. 2017; 37 (4): MCB.00451-16. doi:10.1128/MCB.00451-16  
20.   Kuriyama Shinichi, Yaegashi Nobuo, Nagami Fuji, et al. The Tohoku Medical Megabank Project: Design and Mission. Journal of Epidemiology. 2016; 26 (9): 493-511. doi:10.2188/jea.JE20150268  
21.   Hasegawa Atsushi, Kaneko Hiroshi, Ishihara Daishi, et al. GATA1 Binding Kinetics on Conformation-Specific Binding Sites Elicit Differential Transcriptional Regulation. Molecular and Cellular Biology. 2016; 36 (16): 2151-2167. doi:10.1128/MCB.00017-16  
22.   Yamazaki Hiromi, Suzuki Mikiko, Otsuki Akihito, et al. A Remote GATA2 Hematopoietic Enhancer Drives Leukemogenesis in inv(3)(q21;q26) by Activating EVI1 Expression. Cancer Cell. 2014; 25 (4): 415-427. doi:10.1016/j.ccr.2014.02.008  
23.   Mishima Eikan, Inoue Chisako, Saigusa Daisuke, et al. Conformational Change in Transfer RNA Is an Early Indicator of Acute Cellular Damage. Journal of the American Society of Nephrology. 2014; 25 (10): 2316-2326. doi:10.1681/ASN.2013091001  
24.   Mukai Harumi Y., Suzuki Mikiko, Nagano Masumi, et al. Establishment of erythroleukemic GAK14 cells and characterization of GATA1 N-terminal domain. Genes to Cells. 2013; 18 (10): n/a-n/a. doi:10.1111/gtc.12084  
25.   Shimizu Ritsuko, Hasegawa Atsushi, Ottolenghi Sergio, et al. Verification of the in vivo activity of three distinct cis -acting elements within the Gata1 gene promoter-proximal enhancer in mice. Genes to Cells. 2013; 18 (11): 1032-1041. doi:10.1111/gtc.12096