Tohoku University Tohoku Medical Megabank Organization (Osamu Tanabe)
2020.11.20

1.   Okuda Hiroshi, Okamoto Koji, Abe Michiaki, et al. Genome-wide association study identifies new loci for albuminuria in the Japanese population. Clinical and Experimental Nephrology. 2020; : . doi:10.1007/s10157-020-01884-x  
2.   Kuriyama Shinichi, Metoki Hirohito, Kikuya Masahiro, et al. Cohort Profile: Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study (TMM BirThree Cohort Study): rationale, progress and perspective. International Journal of Epidemiology. 2020; 49 (1): 18-19m. doi:10.1093/ije/dyz169  
3.   Sugawara Junichi, Ishikuro Mami, Obara Taku, et al. Maternal Baseline Characteristics and Perinatal Outcomes: the Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study. Journal of Epidemiology. 2020; : . doi:10.2188/jea.JE20200338  
4.   Hozawa Atsushi, Tanno Kozo, Nakaya Naoki, et al. Study Profile of the Tohoku Medical Megabank Community-Based Cohort Study. Journal of Epidemiology. 2020; : . doi:10.2188/jea.JE20190271  
5.   Shirota Matsuyuki, Saigusa Daisuke, Yamashita Riu, et al. Longitudinal plasma amino acid profiling with maternal genomic background throughout human pregnancy. Medical Mass Spectrometry. 2020; 4 (1): 36-49. doi:10.24508/mms.2020.06.001  
6.   Takahashi Yuta, Takeuchi Hikaru, Sakai Mai, et al. A single nucleotide polymorphism (−250 A/C) of the GFAP gene is associated with brain structures and cerebral blood flow. Psychiatry and Clinical Neurosciences. 2020; 74 (1): 49-55. doi:10.1111/pcn.12932  
7.   Sugawara Junichi, Ochi Daisuke, Yamashita Riu, et al. Maternity Log study: a longitudinal lifelog monitoring and multiomics analysis for the early prediction of complicated pregnancy. BMJ Open. 2019; 9 (2): e025939. doi:10.1136/bmjopen-2018-025939  
8.   Yamaguchi-Kabata Yumi, Yasuda Jun, Uruno Akira, et al. Estimating carrier frequencies of newborn screening disorders using a whole-genome reference panel of 3552 Japanese individuals. Human Genetics. 2019; 138 (4): 389-409. doi:10.1007/s00439-019-01998-7  
9.   Nagasaki Masao, Kuroki Yoko, Shibata Tomoko F., et al. Construction of JRG (Japanese reference genome) with single-molecule real-time sequencing. Human Genome Variation. 2019; 6 (1): 27. doi:10.1038/s41439-019-0057-7  
10.   Yasuda Jun, Kinoshita Kengo, Katsuoka Fumiki, et al. Genome analyses for the Tohoku Medical Megabank Project towards establishment of personalized healthcare. The Journal of Biochemistry. 2019; 165 (2): 139-158. doi:10.1093/jb/mvy096  
11.   Yasuda Jun, Katsuoka Fumiki, Danjoh Inaho, et al. Regional genetic differences among Japanese populations and performance of genotype imputation using whole-genome reference panel of the Tohoku Medical Megabank Project. BMC Genomics. 2018; 19 (1): 551. doi:10.1186/s12864-018-4942-0  
12.   Koshiba Seizo, Motoike Ikuko, Saigusa Daisuke, et al. Omics research project on prospective cohort studies from the Tohoku Medical Megabank Project. Genes to Cells. 2018; 23 (6): 406-417. doi:10.1111/gtc.12588  
13.   Yamaguchi-Kabata Yumi, Yasuda Jun, Tanabe Osamu, et al. Evaluation of reported pathogenic variants and their frequencies in a Japanese population based on a whole-genome reference panel of 2049 individuals. Journal of Human Genetics. 2018; 63 (2): 213-230. doi:10.1038/s10038-017-0347-1  
14.   Sakai Mai, Takeuchi Hikaru, Yu Zhiqian, et al. Polymorphisms in the microglial marker molecule CX3CR1 affect the blood volume of the human brain. Psychiatry and Clinical Neurosciences. 2018; 72 (6): 409-422. doi:10.1111/pcn.12649  
15.   Lee Mary P., Tanabe Osamu, Shi Lihong, et al. The orphan nuclear receptor TR4 regulates erythroid cell proliferation and maturation. Blood. 2017; 130 (23): 2537-2547. doi:10.1182/blood-2017-05-783159  
16.   Kuriyama Shinichi, Yaegashi Nobuo, Nagami Fuji, et al. The Tohoku Medical Megabank Project: Design and Mission. Journal of Epidemiology. 2016; 26 (9): 493-511. doi:10.2188/jea.JE20150268  
17.   Saigusa Daisuke, Okamura Yasunobu, Motoike Ikuko N., et al. Establishment of Protocols for Global Metabolomics by LC-MS for Biomarker Discovery. PLOS ONE. 2016; 11 (8): e0160555. doi:10.1371/journal.pone.0160555  
18.   Koshiba Seizo, Motoike Ikuko, Kojima Kaname, et al. The structural origin of metabolic quantitative diversity. Scientific Reports. 2016; 6 (1): 31463. doi:10.1038/srep31463  
19.   Cui Shuaiying, Tanabe Osamu, Sierant Michael, et al. Compound loss of function of nuclear receptors Tr2 and Tr4 leads to induction of murine embryonic β-type globin genes. Blood. 2015; 125 (9): 1477-87. doi:10.1182/blood-2014-10-605022  
20.   Nagasaki Masao, Yasuda Jun, Katsuoka Fumiki, et al. Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. Nature Communications. 2015; 6 (1): 8018. doi:10.1038/ncomms9018  
21.   Keleku-Lukwete Nadine, Suzuki Mikiko, Otsuki Akihito, et al. Amelioration of inflammation and tissue damage in sickle cell model mice by Nrf2 activation. Proceedings of the National Academy of Sciences. 2015; 112 (39): 12169-12174. doi:10.1073/pnas.1509158112  
22.   Motoike Ikuko N, Matsumoto Mitsuyo, Danjoh Inaho, et al. Validation of multiple single nucleotide variation calls by additional exome analysis with a semiconductor sequencer to supplement data of whole-genome sequencing of a human population. BMC Genomics. 2014; 15 (1): 673. doi:10.1186/1471-2164-15-673  
23.   Shi Lihong, Lin Y.-H., Sierant M. C., et al. Developmental transcriptome analysis of human erythropoiesis. Human Molecular Genetics. 2014; 23 (17): 4528-4542. doi:10.1093/hmg/ddu167  
24.   Shi Lihong, Sierant M. C., Gurdziel Katherine, et al. Biased, Non-equivalent Gene-Proximal and -Distal Binding Motifs of Orphan Nuclear Receptor TR4 in Primary Human Erythroid Cells. PLoS Genetics. 2014; 10 (5): e1004339. doi:10.1371/journal.pgen.1004339  
25.   Hosoya T., Clifford M., Losson R., et al. TRIM28 is essential for erythroblast differentiation in the mouse. Blood. 2013; 122 (23): 3798-3807. doi:10.1182/blood-2013-04-496166  
26.   Suzuki Mikiko, Yamazaki Hiromi, Mukai Harumi Y., et al. Disruption of the Hbs1l-Myb Locus Causes Hereditary Persistence of Fetal Hemoglobin in a Mouse Model. Molecular and Cellular Biology. 2013; 33 (8): 1687-1695. doi:10.1128/MCB.01617-12  
27.   Shi Lihong, Cui Shuaiying, Engel James D, Tanabe Osamu. Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction. Nature Medicine. 2013; 19 (3): 291-294. doi:10.1038/nm.3101